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ABSTRACT 

We show that any spectrally dominant vector norm on the vector space of 
matrices which is invariant under isometries dominates the numerical radius r(.). 
Thus, the celebrated Lax-We&off stability condition, r( -) < 1, defines a maximal 
isometrically invariant stable set. 

1. INTRODUCTION 

The study of many iterative procedures involves the question of uniform 
power-boundedness of elements in a set F of n X n complex-valued matrices. 
That is, one is interested in the existence of a constant K > 0 such that for 
every matrix A E F 

lAkl Q K, k=1,2,... . 0.1) 

Such a set F is called a stable set. Here 1.1 denotes a vector norm on M, -the 
algebra of n X n complex valued matrices. It is customary to call such a norm 
a generalized matrix norm, to distinguish 1. ( from a matrix norm, (1. I(, which in 
addition to being a vector norm on M, is also submultiplicative, i.e., (I ABll < 
~~A~~l~B~~. We think, however, that the term “generalized matrix norm” is 
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confusing and we prefer to call the norm 1. ) the vector norm on matrices, or 
simply the vector norm. 

Since M, is finite dimensional, alI vector norms on M, are equivalent, and 
hence the stability of F does not depend on the particular choice of a vector 
norm. We would like to study stable sets. A complete characterization of such 
sets was given by H. 0. Kreiss in [3]; his conditions, however, are hard to 
verify in the general case and hence difficult to apply. One tries, therefore, 
simplify Kreiss’s conditions by putting additional assumptions on the stable 
set F. A natural assumption which is fully justified in applications is 

(i) F is a convex set. 

Next, to simplify the problem in question, we shall suppose 

(ii) eieF = F, i.e., A E F iff eieA E F, for all real 8. 
(iii) F contains an open neighborhood of the zero matrix. 

Finally we note that the power-boundedness (1.1) holds for any A in the 
closure of F, so we may assume 

(iv) F is a closed set. 

We call a vector norm 1.1 a stable norm if its unit ball is a stable set. 
Assumptions (i)-(iv) imply, therefore, that F is the unit ball of some stable 
norm 1.1: 

F = {A] ]A] 6 l}. tw 
So we may as welI study stable norms. It easily follows that every A in a stable 
set F satisfies the Neumann condition 

P(A) < 1, 0.3) 

p(A) denoting the spectral radius of A. Hence, taking F to be in particular 
the unit ball of a stable norm ] * 1, we find for such a norm 

P(A) G PI forall AEM,,. 0.4) 

A vector norm 1. I satisfying the above inequality is called spectrally dominant, 
and we conclude that spectral dominance is necessary for a vector norm to be 
stable. Thus we arrived at the following 

PROBLEM. Which spectrally dominant vector norms on M, are stable? 
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Let (a, .) be a given inner product on C “, the space of n-column complex 
vectors. Also, any A E M, defines an operator A : C n + C n in the obvious 
way. The numerical radius of A is then defined by 

It is well known that r( 0) is a vector norm. In 1964 Lax and Wendroff [4] 
showed for the Euclidian inner product (x, y) = y*x that r(a) is a stable norm, 
i.e., that the set 

{Al+Qd) w-9 

is a stable one; their proof proceeds by induction on the dimension n. In fact, 
the numerical radius r( .) induced by a general inner product-necessarily of 
the form (x, y) = y*Hx, H = T*T > 0- is a stable norm as well [6]. Indeed, 
its unit ball is similar to the set (1.6), with T the similarity transformation. The 
aim of this paper, is to show that the Lax-Wendroff condition, T( .) < 1, is 
optimal in the following sense. 

MAIN THEOREM. Let F G M, be a stable set satisfying assumptions 
(i)-(iv). Assume jkthermore that I? is invariant under similarity by isome- 
tries; that is, 

UFU-l=F j&raZZUsuchthat (Ux,Ux)=(x,x). (1.7) 

Then F is contained in the set (1.6). 

The above result implies 

COROLLARY. Any spectrally dominant vector norm which is invariant 
under similarity by isometrics is stable. 

We close this section with an interesting conjecture of C. Johnson [2] 
(which is stated there in an equivalent form). 

CONJECTURE. Any spectrally dominant norm is stable. 
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2. INVARIANT NORMS 

LEMMA 1. Assume that the vector norm 1. ) is invariant under the 
similarity by a matrix U, 

(UAU-‘( = (A( forall AE M,. (24 

Then U is similar to a diagonal matrix A, 

A=diag(A,,...,X,), Ix,I=lhjl, l<i,j<n. (2.2) 

Proof. Suppose first 

ux = A$, U’y = xjy, x,y*o, 

where U t is the transpose of U. For A = xy t we then have 

UAW’ = h&‘A, 

so IX, I = Ih jl by (2.1). It is left to show that U is similar to diagonal matrix. 
Assume to the contrary that U is similar to an upper triangtdar matrix 
V’(Vij)Y’ 

U=m-’ with vu = vss = h, vi2 = 1. 

Noting that X * 0, we choose 

A=TBT-‘, 

where the only nonzero entry of B = (bij)y is b, = A-‘. A straightforward 
calculation shows that the (1,2) entry of T-‘(UkAUk)T is k’. The matrices 
UkAU- k are therefore not uniformly bounded. On the other hand, (2.1) yields 

IUkAU-kl = IAl 

and in particular, the matrices UkAUk are uniformly bounded. The above 
contradiction establishes the lemma. n 

By Lemma 1, the study of invariant norms is reduced to invariance under 
diagonal matrices of the form (2.2). We continue by considering invariance 
under such type of similarities. 
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For each A = ( ai j) let diag( A) denote the diagonal matrix diag(a,,, . . . , 
a,,“). We have 

LEMMA 2. Let 1.1 be a vector norm on M,, invariant under the similarity 
by a diagonal matrix A= diag(X,,...,h,), (Xi1 = 1X,1, 1 <i, j< n. Assume 
that Xi * A j for i * j. Then 

bdA)I G IAl- (2.3) 

Proof. From the A-invariance it follows that 

& F AkAKk <--& 2 IAkAA-kl=IA(. 
k-Q k=O 

Let A,,, denote the matrix on the left: 

A,,, = (a$“) = ---& g AkAA-k. 
k=O 

We have 

a$;’ = a,,, &?)=a.. 
1- (hi/hj)m+l 

‘I ym+l)(l-hi/Aj) for i’j 

Let m + 00 and obtain (2.3). 
Let (- , .) be an inner product on C”. Then this inner product induces a 

natural norm on C” - llxll =(x, x) ‘I2 A transformation U: C” + C” is called . 
an isometry if IlUxll = IIxII. 

THEOREM 1. Let I * I be a vector rwrm on M, invariant under similarity by 
isometrics; that is, 

IUAU-‘1 = IAl foraZZUsuchthut (Ux,Ux)=(x,x). (2.4) 

Then 1. ) is spectrally dominant if and only if I + 1 dominates the numerical 
radius (1.5), viz. 

r(A) Q IAl. (2.5) 
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Proof. The numerical radius is a stable norm; hence the sufficiency of 
(2.5) is obvious, since 

P(A) Q r(A). (2.6) 

We turn now to prove the necessity of (2.5). We consider first the Euclidean 
inner product (x, y) = y*x; the corresponding numerical radius (1.5) is de 
noted by rr(A), and the isometries in this case are unitary matrices. They 
include in particular any diagonal matrix whose spectrum lies on the unit 
circle. So we may apply Lemma 2, yielding (2.3). 

For A = (a i j); we have 

The assumption that 1.1 is spectrally dominant therefore implies 

which combined with (2.3) gives us 

n-m laiil Q IAI. (2.8) 
l<idtl 

Since p( -) and I-1 are both unitarily invariant, it follows that (2.8) holds for 
any matrix unitarily similar to A. Let V be a unitary matrix with first column 
x, x*x = 1. Employing (2.8) for V*AV = (cuij), we get 

Ix*AxI = lqrl d IV*AVI = IAl. 

Since for any x, x*x = 1, we can find a unitary V whose first column is x, we 
conclude 

r,(A) = x~ylI~*A~J Q IAl. (2.9) 

Consider now a general inner product (. , - ); it is necessarily of the form 

(x, Y) = y*lfx (2.10) 

with a positive Hermitian Z-I. For the corresponding numerical radius, r( -) = 
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rH( a), it is straightforward to show 

rH(A) = T~(H~/~AH-~‘~). (2.11) 

Let 1.1 H be another norm on M, given by 

(Al, = (H-“2AH”21. (2.12) 

Since the isometries in this case consist of matrices U such that ZYZ”~UH- ‘I2 
is unitary, we find on account of (2.4) that the new norm 1. IH is unitarily 
invariant; by (2.9) therefore 

This inequality is equivalent to (2.5) in view of (2.11)-(2.12). The proof of the 
theorem is completed. n 

We note that in the course of proving necessity in the last theorem, we 
used only the spectral dominance for diagonal matrices. When combined with 
the unitary invariance, however, this is equivalent to the spectral dominance 
(1.4), as easily seen by considering the Schur triangular form. 

Proof of Main Theora. Our assumptions imply that F is the unit ball of 
some vector norm 1.1, which necessarily satisfies (2.4). Since F is stable, the 
norm 1.1 is spectrally dominant. By Theorem 1, it dominates the numerical 
radius as well; whence r(A) < I Al < 1 and F is contained in the set (1.6). 

3. AN OPEN PROBLEM 

Let I * I be a unitarily invariant vector norm on M,. For x E C n denote 

D(x)=diag(x,,...,x,), (3.1) 

and then define a vector norm 11. II on C “, 

ll4l= PW (3.2) 

Since I-1 is unitarily invariant, it follows that 

IIWI = llxll (3.3) 
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for all permutation matrices P; that is, ]]x]] is a symmetric norm. Vice versa, if 
11.11 is a norm on C”, we can define a unitarily invariant vector norm 1.1 on M,, 
as follows: 

IAl = pFu Idiag(UAU-‘)I. (3.4) 

Here U stands for the set of all unitary matrices, and the norm on the right is 
the norm of the fl-tuple diagonal entries viewed as a vector in @ n. The norm 
1.1 is a minimal invariant in view of (2.3). 

Clearly I - I is spectrally dominant iff 

In particular, let ]]x]lP be the Holder norm 

and denote by I * IP the corresponding invariant norm given by (3.4). Since I * Ip 
is stable, we have the inequality 

1% G ~,,,I4;, k=1,2,... , (3.7) 

For p = cc equality holds in (3.5), we have ]A], = rl( A), and hence 

K =l, oo,n (3.8) 

as 

rI( Ak) G r;(A). (3.9) 

This was the Halmos conjecture [l]. See [5] for a short proof. 

PROBLEM. For which values of p, l< p < cc, are the constants K,, n 
uniformly bounded in n? 

Added in proof. The Johnson conjecture is verified in a recent paper, All 
spectral dominant norms are stable, by S. Friedland and C. Zenger. 
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